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Improved correlation dimension estimates

through change of variable
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To evaluate the correlation dimension of chaotic regimes of a CO, laser with modulated losses, attractor reconstruction using
the method of delays is performed using the logarithm of the intensity rather than the intensity itself. Improved convergence with
respect to the embedding dimension and better reliability are observed.

1. Introduction

The measure of quantities like dimensions, entro-
pies and Lyapunov exponents has by now become
standard to analyze and characterize the chaotic dy-
namics which can be observed in a variety of ex-
perimental systems [1]. Most of the time, they are
evaluated by reconstructing from a single time series
the underlying strange attractor in R” using the
method of time delays proposed by Takens and
Packard et al. [2]. Indeed, in the limit of an infinite,
noise-free time series, the reconstructed attractor is
shown to be diffeomorphic to the original one and
may therefore be used to compute the above-men-
tioned quantities, which are left invariant by diffeo-
morphisms. Nevertheless the experimentalist is not
only interested in the validity, but also in the ro-
bustness of the method, as he obtains from experi-
ments finite time series corrupted by noise. He is
furthermore limited by the computer time necessary
to run the computational algorithms.

Among the different quantitative measures of cha-
otic behaviors, one of the most widely used is the
evaluation of the correlation dimension of the re-
constructed attractor through the Grassberger—
Procaccia algorithm [3]. This procedure indicates
the minimum number of degrees of freedom nec-
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essary to account for the observed dynamics and
characterizes the fractal nature of the attractor by a
number which may be compared to those obtained
from numerical simulations of models of the system
under consideration. Among the whole spectrum of
generalized dimensions [4], the correlation dimen-
sion D, is the easiest to compute because it needs
fewer data points and does not require finite sample
corrections [5].

While the Grassberger-Procaccia algorithm is
rather easy to implement, numerous sources of sys-
tematic errors may often prevent the result from ac-
curately reproducing the correlation dimension of the
original attractor. These include for example the ef-
fect of random and digitizing noise [6], of low-pass
filtering of the signal [7], of a too strong correlation
between temporal neighbours on the trajectory [8].

We will try to show in the sequel that a strong non-
uniformity of the attractor can also alter the deter-
mination of the correlation dimension, and how this
effect may be substantially corrected by an adequate
change of variable. This will be illustrated using ex-
perimental signals and numerical simulations of a
CO, laser with modulated losses, comparing attrac-
tors reconstructed with the output intensity of the
laser and with the logarithm of this intensity.
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2. Experimental system

The experimental signals presented hereafter come
from a CO, waveguide laser with an electrooptic
crystal and a ZnSe Brewster angle plate inserted in-
side the cavity of the laser [9]. A sinusoidal voltage
is applied to the crystal at a frequency of 382.5 kHz,
which results in modulation of the losses for the laser.
The typical scenario encountered when increasing the
modulation amplitude is a sequence of period dou-
blings culminating in chaos [9]. The output inten-
sity of the laser is measured with a HgCdTe detector
and data acquisition is done with a LeCroy 9400
transient digitizer with a maximum sampling rate of
100 MHz, a storage capacity of 32000 samples and
a resolution of eight bits.

The signals which may be seen on the first rows of
figs. la and 2a have been recorded respectively at the
end of the inverse cascade and further in the chaotic
region. The intensity of the laser is often close to the
zero intensity, so that a large number of points ( 15%
and 45% in the case of figs. 1a and 2a respectively)
in the time series have the same digitized value. When
reconstructing the attractor using the method of time
delays, small regions of the attractor contain most of
the data points, unless very high embedding dimen-
sions are used. This is a problem for accurately eval-
uating the correlation dimension, since the fractal
structure is poorly resolved in those overpopulated
parts of the attractor, due to the limited resolution
of the digitizer. Similar signals with long periods of
almost constant intensity may also be found in other
chaotic lasers such as the laser with a saturable ab-
sorber [10] and the doped fiber laser with pump
modulation [11]. Heavy low-pass filtering of the sig-
nal was used in ref. [12] to circumvent this prob-
lem. However, this introduces systematic errors as
discussed by Badii et al. [7].

This feature of temporal signals in lasers can easily
be explained by the fact that intracavity absorption
and gain through stimulated emission are propor-
tional to the intracavity radiation intensity /. This
may be illustrated for example by the evolution
equations for I and the inversion population D ob-
tained from a single-mode, homogeneously broad-
ened, two-level model for our laser with modulated
losses [13]:
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Fig. 1. Comparison of the attractors reconstructed with: (a) out-
put of the HgCdTe detector, (b) output of the logarithmic am-
plifier. Row 1: simultaneous temporal sequences (625 samples).
Row 2: phase portraits (20000 samples). 1="7At, where Ar=80
ns is the sampling time. Row 3: log-log (base 2) plot of the cor-
relation integral versus length scale (r+p) for embedding di-
mensions 1 to 10 using 7 as delay and 5000 data points. Row 4:
slopes of the log-log plots of the correlation integral versus length
scale for embedding dimensions 1 to 10.

.| =2kl(AD—1—msin wt) ,

dt

dD

— = - §i 1
i y[1-D(1+1)], (1)

where x is the cavity damping rate, 4 the pump pa-
rameter, m and @ the modulation amplitude and fre-
quency, y the population inversion relaxation rate.
The time derivative of I being proportional to /, the
intensity seems to be frozen when it comes close to
zero. It is then natural to use the logarithm of the
intensity, whose time derivative is
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Fig. 2. Comparison of the attractors reconstructed with: (a) out-
put of the HgCdTe detector, (b) output of the logarithmic am-
plifier. Row 1: simultaneous temporal sequences (625 samples).
Row 2: Phase portraits (20000 samples). t=8At, where Ar=80
ns is the sampling time. Row 3: log-log (base 2) plot of the cor-
relation integral versus length scale r for embedding dimensions
1 to 20 using 7 as delay and 5000 data points. Row 4: slopes of
the log-log plots of the correlation integral versus length scale for
embedding dimensions | to 20.

c%log I=2k(AD—1—msin wt) ,
as the relevant dynamical variable. In other respects,
Oppo et al. [14] remarked that the logarithm of the
intensity appeared as a natural variable of their final
equations in a paper in which they derived, by means
of the center manifold theorem, two-dimensional
equations for the CO, laser taking into account the
coupling with rotational levels.

We have therefore inserted in our experimental
setup a logarithmic amplifier between the detector
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and the digitizer. The output signal given by this am-
plifier is proportional to log(V.+ V), where V, is
the signal coming from the detector. The offset V
was chosen so that the zero intensity voltage of the
detector was situated in the high slope region of the
amplifier characteristics, in such a way as to dis-
criminate the low intensity points without saturating
too much the maxima. In each measurement the in-
tensity signal coming directly from the detector and
the output of the logarithmic amplifier were stored
simultaneously to allow further comparison of the
correlation integrals obtained in each case. The first
rows of figs. 1b and 2b show the output signals of the
logarithmic amplifier which were recorded simulta-
neously with the signals of figs. 1a and 2a respec-
tively. These latter correspond to different modula-
tion amplitudes and contain different amounts of low
intensity periods. It is easy to see that the dynamics
for the low intensity levels is well resolved. By in-
specting the phase portraits on the second row of figs.
1 and 2, one can verify that the attractor recon-
structed with the “logarithm” of the intensity is much
more homogeneous and seems to be better recon-
structed than the one obtained with the intensity.

3. Analysis of the experimental data

We present in this part the results obtained by ana-
lyzing these experimental data files with the Grass-
berger-Procaccia algorithm. Interpoint distances
were computed using the maximum norm because,
besides the fact that this speeds up significantly cal-
culations, the systematic error induced by digitizing
is more easily corrected than in the case of the Eu-
clidean norm [6]. Indeed, because of the eight-bit
resolution of the digitizer, we followed for the signal
of fig. 1 a procedure suggested by Moller et al. [6],
which consists in replacing r by r+p in the log-log
plots of the correlation integrals C(r), where p is half
the last significant bit of the digitizer. Such a cor-
rection was also used by Hiibner et al. to compute
dimensions and entropies in a NH; laser [15]. On
the other hand, we did not use this correction in the
case of the signal of fig. 2, because a noise level of
the order of the last significant bit was estimated from
the sudden slope increase in the log—log plots of the
correlation integral. The digitizing error is substan-
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tially reduced in this case [6], and using the correc-
tion would overestimate the correlation dimension.
It is possible that for the first data file the correction
for the digitizing error, which assumes that the data
are noise free, slightly overestimates the correlation
dimension. However, our primary goal is to illus-
trate how attractor reconstruction depends on the
variable used.

The third and fourth rows of fig. 1 display the plots
of log C(r) versus log(r+p) for embedding dimen-
sions up to 10 and of the local slopes of these curves
versus log(r+p) for the signals of fig. 1. The time
delay 7 used in the reconstruction was chosen em-
pirically as the one which yielded the widest scaling
regions, and is approximately equal to 0.217, where
T is the period of the modulation. Whereas no clear
convergence of the local slopes may yet be seen in
fig. la, where intensity was used, saturation is ob-
served on fig. 1b for embedding dimensions greater
than 6. The plateau in this case is only approxi-
mately 1.5 octaves wide, but it is rather difficult to
get wider scaling regions with eight-bit resolution, if
we exclude highly homogeneous attractors such as
the Lorentz attractor [16]. The good convergence
with the embedding dimension allows us to estimate
the correlation dimension to be close to 2.05. Fig. 3
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Fig. 3. Average slope in the “plateau region™ versus embedding
dimension for the data files of fig. la (circles) and fig. lb
(squares).
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displays the evolution of the estimation of the cor-
relation dimension as a function of the embedding
dimension for the I and log/ signals of fig. 1. The
fact that the curves saturate much faster with the
embedding dimension improves clearly the estima-
tion of the correlation dimension, because the sys-
tematic overestimate of the fractal dimension due to
random noise increases with the embedding dimen-
sion.

The signal of fig. 2 is much more inhomogeneous
than the signal of fig. 1 (the zero intensity level cor-
responds to more than 75% of the samples). As a
consequence, we used in this case embedding di-
mensions up to 20 to achieve saturation of the local
slopes. The optimal time delay was found to be equal
in this case to 0.247. Saturation of the local slopes
is observed in both cases for embedding dimensions
greater than 16, but there is a clear-cut difference be-
tween the two correlation dimension estimates. When
laser intensity is used, slopes saturate near 1.5,
whereas a correlation dimension close to 2.09 may
be estimated from the output of the logarithmic am-
plifier, as may be seen on fig. 4. It is nevertheless
possible that this value is still underestimated be-
cause the inhomogeneity is only partially removed.
It is indeed interesting to note that, for embedding
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Fig. 4. Average slope in the “plateau region™ versus embedding
dimension for the data files of fig. 2a (circles) and fig. 2b
(squares).
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dimensions lower than 10, slopes of the correlation
integrals are approximately equal to 0.15 in fig. 2a,
indicating a very strong inhomogeneity, while in fig.
2b they cluster around 1.05. Thus, for low embed-
ding dimensions, the reconstructed strange attrac-
tors look respectively like a point and a line.

For some other very inhomogeneous data sets, we
were not able to find any clear scaling region in the
log-log plots. We nevertheless systematically found
that the local slopes using the logarithm were sig-
nificantly higher than with the intensity and were al-
ways in the order of 2 for small distances.

4. Numerical simulations

We have also applied the same procedure to sig-
nals coming from numerical simulations, to check if
similar effects could be observed even with higher
precision, since in this case smaller length scales may
be investigated. The set of equations (1) was nu-
merically integrated with the Bulirsch-Stoer algo-
rithm [17] and table 1 displays the parameters used.
The signals were digitized to 32 bits. To compute the
correlation integrals, we reconstructed the attractor
using the method of delays, to ease the comparison
with the experimental results.

To evaluate the fractal dimension with the best
precision possible, since we are not limited in this
case by random noise and digitizing errors, we used
a maximum likelihood estimator of the correlation
dimension derived by Takens [18]. The Takens es-
timator D(r,) of the correlation dimension for the
length scales between 0 and r, is defined as

1
— ——— ={In(r/r, i
D(ro) < ( / 0)>
where the averaging is done on all the distances r be-
tween points of the attractor smaller than r,. This

Table 1
Parameters Value
K 6x107s~!
A 1.1
w 4x10° Hz
m 0.0246
¥y 2.510%s~!
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Fig. 5. Analysis of the files obtained from numerical simulations
using: (a) intensity, (b) logarithm of the intensity. Row I: log-
log plot of the correlation integral versus  for embedding dimen-
sions 2 to 10. Row 2: Takens estimator of the correlation dimen-
$10N Dy gpens (7) versus log,r for embedding dimensions 2 to 10.

method, which has the advantage of being non-par-
ametric, is more difficult to use with digitized data
of relatively low precision since there is in this case
a large incertainty in the logarithms of the distances.

Correlation integrals and the Takens estimator for
the numerical simulations may be seen in fig. 5. The
calculations were made with 5000 points, and a de-
lay time equal to 0.24 7. The benefit in using the log-
arithm of the intensity to reconstruct the attractor is
even more clearly demonstrated than for the exper-
imental data, probably because we may use here the
true logarithm. For embedding dimensions higher
than 3, we observe a clear convergence to a value of
2.29 over nearly three octaves for the logarithm,
whereas no convergence may be seen with the curve
for the intensity. To have independent information
on the fractal dimension of the attractor, we com-
puted the Lyapunov dimension of the attractor [19]
which is known to be an upper bound of the corre-
lation dimension [20]. This yielded a value of 2.304,
which is very close to the correlation dimension
found by the Takens estimator.

5. Conclusion
To evaluate the correlation dimension of signals
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coming from a CO, laser with modulated losses, we
have reconstructed the underlying strange attractor
using the logarithm of the laser intensity instead of
the intensity as is done usually. This allowed us to
achieve better convergence of the slopes of the log-
log plots and to remove artefacts such as false con-
vergence to erroneous values due to inhomogeneity.
We observed that, while in principle dimension is
invariant under changes of variables, choosing the
adequate variable to reconstruct the attractor allows
one to give more reliable estimates of dimension.

Although from a mathematical point of view al-
most all values of the time delay give an acceptable
embedding, there is in practice an optimal value of
the delay for which the desired scaling law is best ob-
served. It is interesting to note that, in the same way,
while in principle reconstruction of the attractor may
be done using any function of the intrinsic dynam-
ical variables, we may conjecture from the results of
this study that there should be an optimal function
for the reconstruction of the attractor. In the case of
our laser, the logarithm of the intensity happens to
be a more natural and more efficient variable for
quantitative characterization than the intensity it-
self. The method may obviously be used in the study
of other chaotic systems with long sequences of al-
most constant signal [10,11].

We believe that using the logarithm of the output
intensity of a laser should also prove useful for other
techniques of characterizing deterministic chaos, such
as symbolic dynamics [21], extraction of unstable
periodic orbits [22] and template analysis [23],
since it provides more details on the regions of the
reconstructed phase space which are squeezed.
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